

Geostatistical data

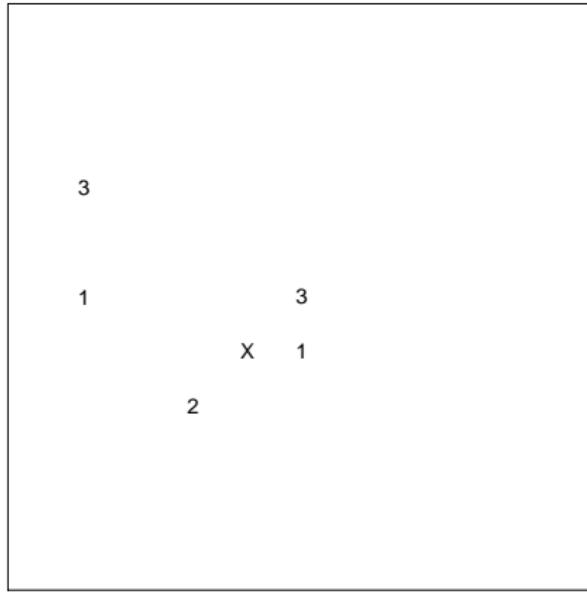
- Quantity measured at a location
 - Assumed characteristic of that location, not a large area
 - Examples:
elevation, annual rainfall, surface soil pH, O₂ concentration at 3m
- Notation:
 - s : location, a vector value.
 - Usually $s = (x, y)$ in some coordinate frame (e.g., longlat or UTM)
 - Written as a vector because details of 1D (beach, line), 2D (earth surface), 3D (ocean, soil, atmosphere) not important
 - $Z(s)$: the characteristic at location s .
- Geostatistical data
 - $Z(s)$ exists everywhere within boundary of study area
 - Generally, no sharp changes (jumps) in $Z(s)$
 - $Z(s_1)$ probably different from $Z(s_2)$, but transition is smooth

Many possible goals

- Predict $Z(s)$ at unmeasured locations
- Describe spatial pattern in $Z(s)$
 - How similar is $Z(s)$ to neighboring values?
 - How does that change with distance to neighbor?
- Model relationship between $Z(s)$ and covariates

Prediction

- Could be done to fill in a grid so can draw map or use image/contour plot
- Or, done because you need predictions at unmeasured points



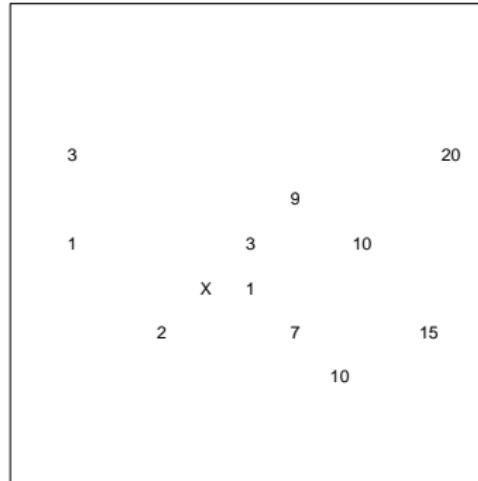
- What is Z at the location marked by X?

Prediction

- One possibility: simple average of Z over entire region
 - Very common in non-spatial contexts
- 1st law of geography (Tobler): everything is related to everything else more closely related to nearby things
- This principle is very important if there is a spatial trend (variation across the region) or some form of spatial pattern.
 - simple average ignores spatial trend and pattern

Prediction

- What if had a bit more data:



- Overall average for region clearly inappropriate
- Consider some form of local average
- We will discuss 3 methods:
 - Inverse distance weighting
 - Spatial trend model
 - Kriging: we'll spend most time / effort on this

Inverse distance weighting

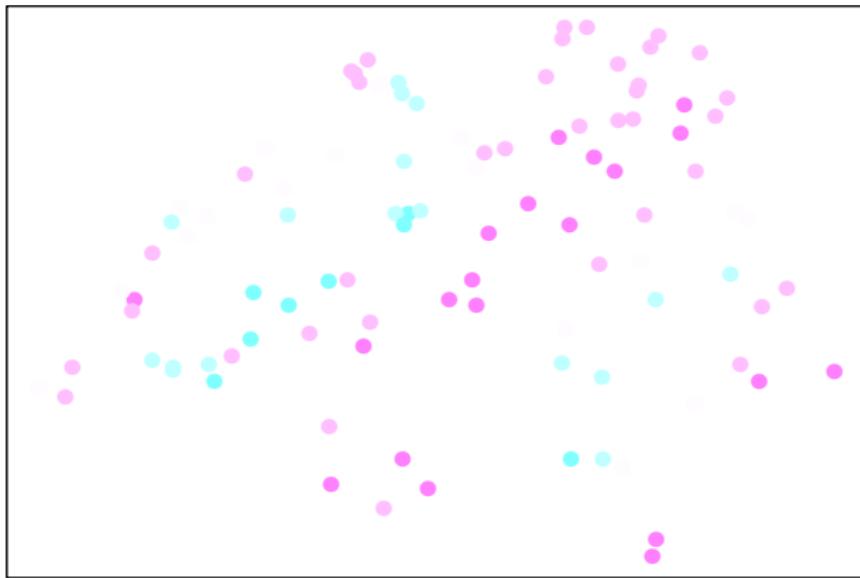
- Concept:
 - Prediction an average that emphasizes nearby values
 - Done by weighting all observations
 - Higher weight to nearby observations
- Notation: s_i is location of i 'th observation
 d_{ij} is distance between location i and location j
 $Z(s_i)$ is value of Z at location s_i
 $\hat{Z}(s_i)$ is prediction of Z at location s_i

$$\hat{Z}(s_j) = \frac{\sum_i w_{ij} Z(s_i)}{\sum_i w_{ij}}, \text{ where}$$
$$w_{ij} = \frac{1}{d_{ij}^a}$$

Inverse distance weighting

- a is an arbitrary parameter, commonly 1 or 2
 - $a = 0$ gives you the simple average over entire region (all weights = 1)
 - larger values \rightarrow “more local” estimate, because emphasize shorter distances
 - if $d_{ij} = 0$, i.e. predicting at an observed location, use observed value
- Characteristics:
 - $w_{ij} \geq 0$ and w_{ij}/sum always ≤ 1
 - Sometimes set small values of w_{ij} to 0
 - $\hat{Z}(s_j)$ always within range of observed values
Some like this; others don't.
- Problem: have to choose a . Some approaches:
 - Ad hoc (you like the resulting picture),
 - or tradition (your field always uses 2 or 1.5 or ??)
- demonstrate role of a by comparing results for $a = 2$ and $a = 1$

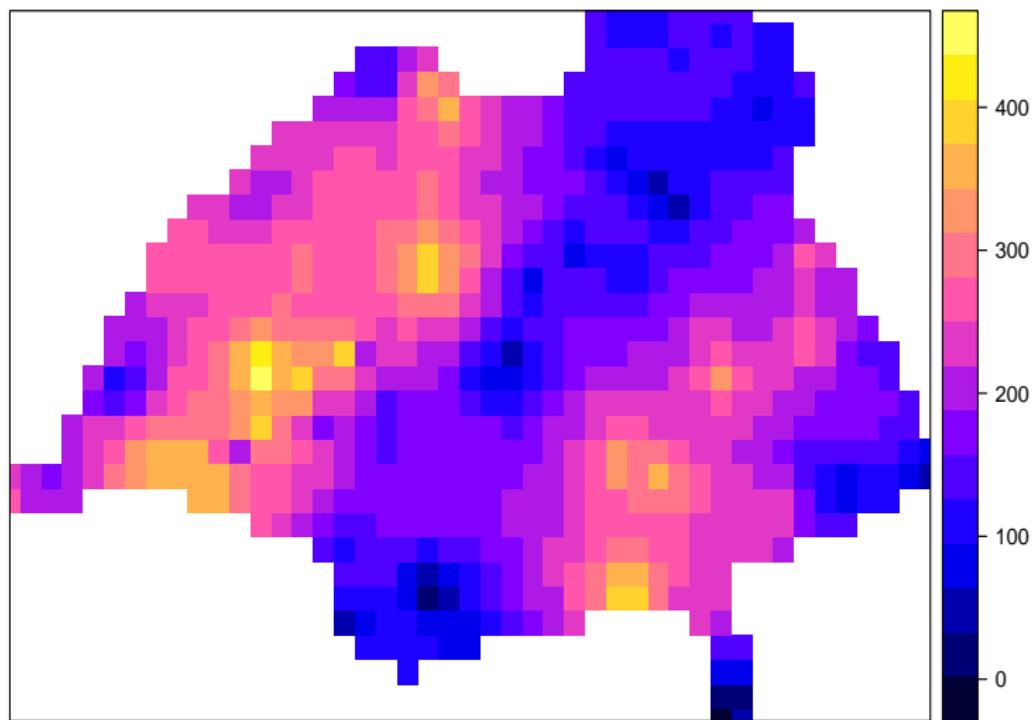
Swiss rainfall data



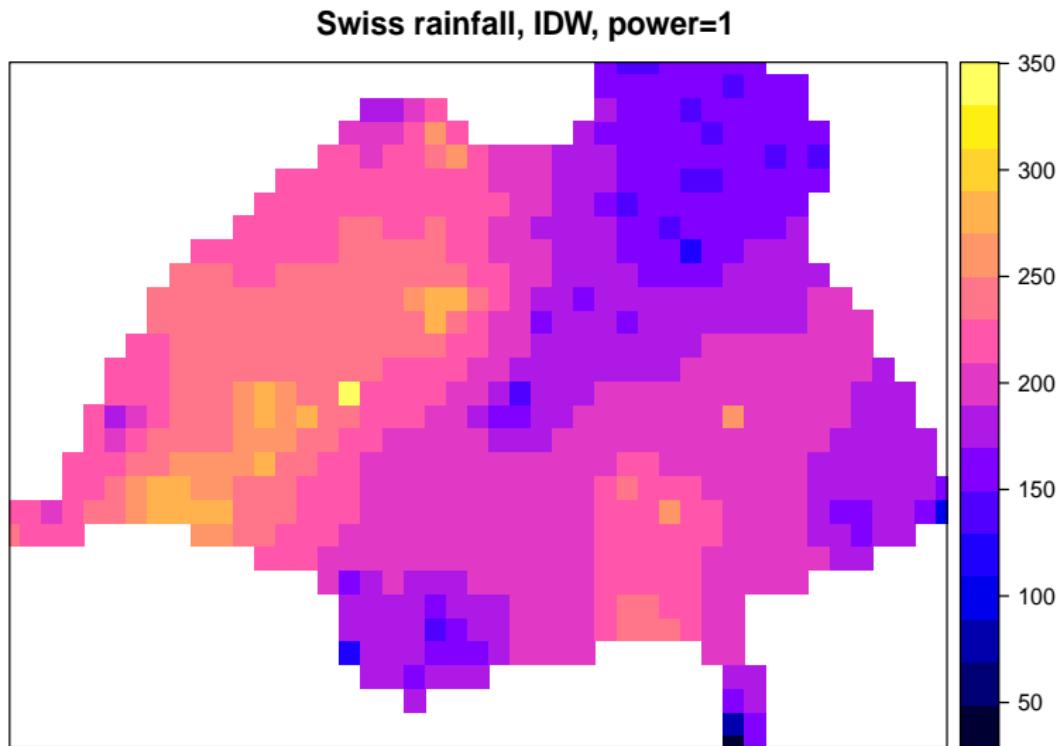
- [0,98.6]
- (98.6,197.2]
- (197.2,295.8]
- (295.8,394.4]
- (394.4,493]

Swiss rain, IDW, power=2

Swiss rainfall, IDW, power=2

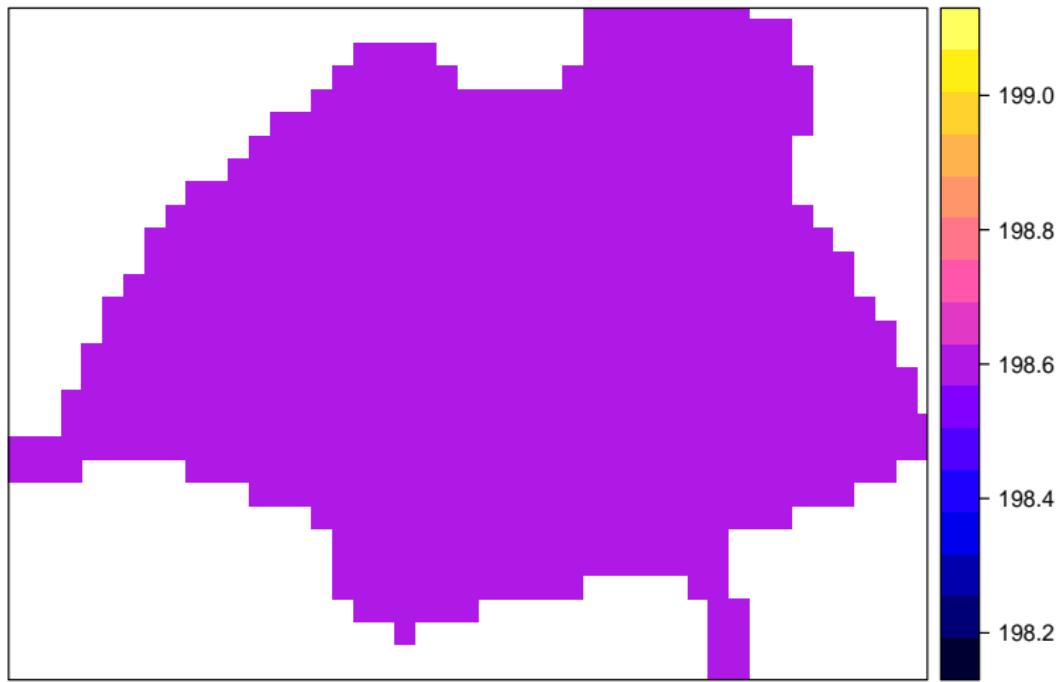


Swiss rain, IDW, power=1

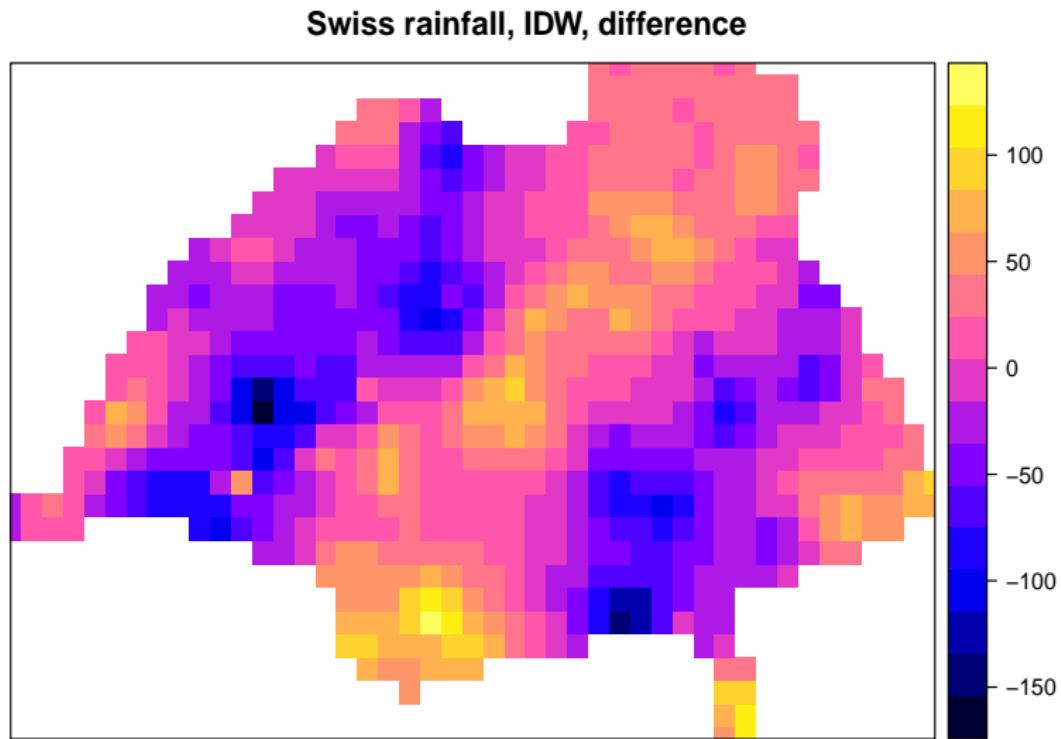


Swiss rain, IDW, power=0

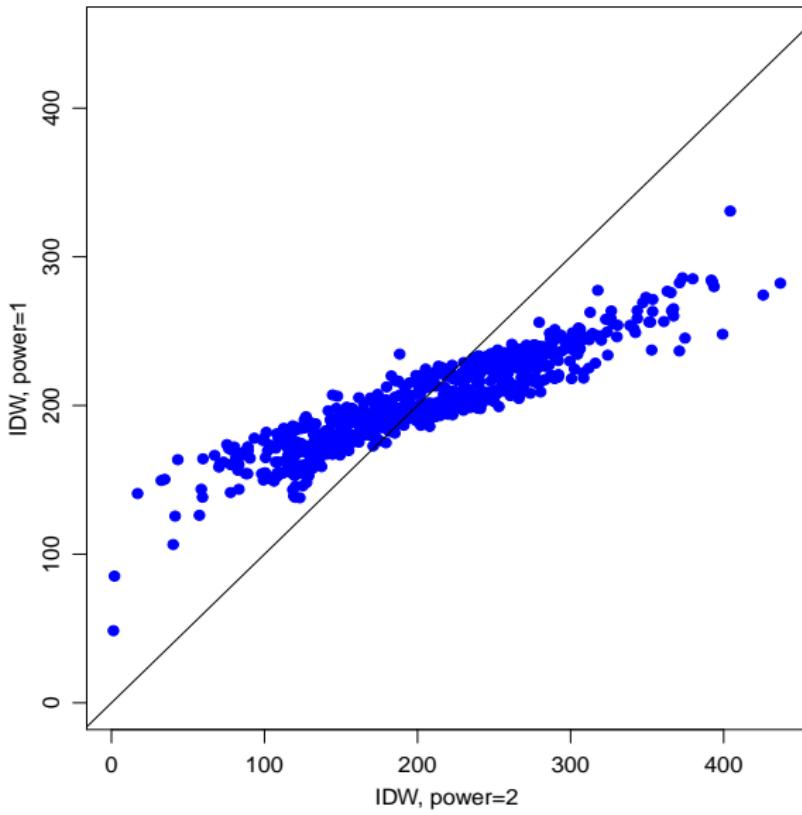
Swiss rainfall, IDW, power=0



Swiss rain, IDW, difference



Swiss rain, IDW, comparison



Spatial trend surface

- Assume some function of X and Y coordinates fits the data
- often a low order polynomial (linear or quadratic)

$$Z(s_i) = \beta_0 + \beta_1 X_i + \beta_2 Y_i + \varepsilon_i, \text{ or}$$

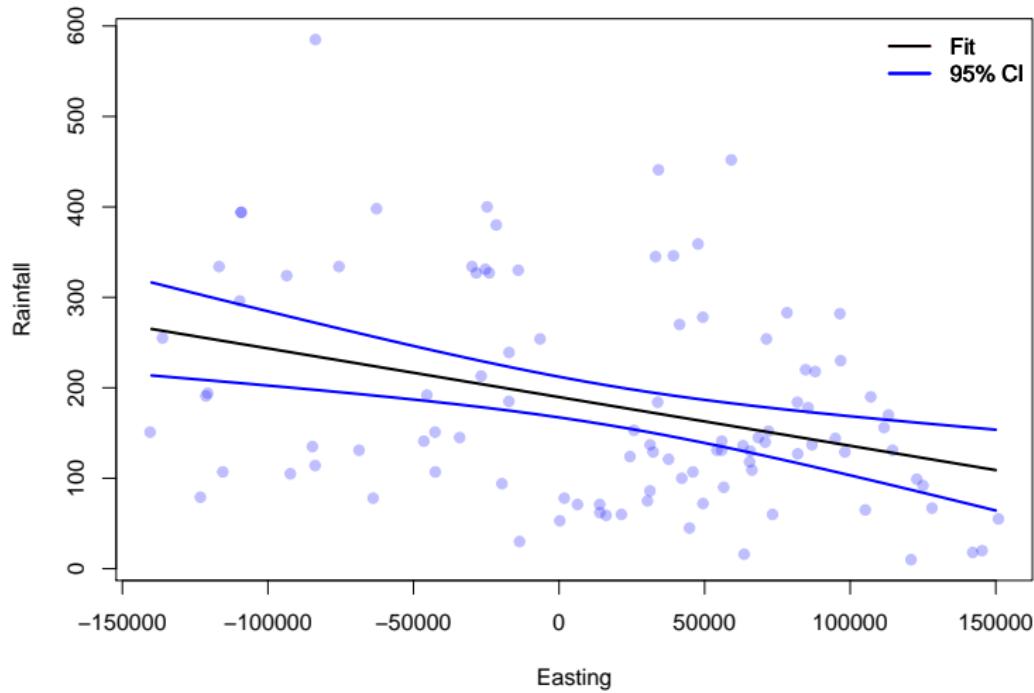
$$Z(s_i) = \beta_0 + \beta_1 X_i + \beta_2 Y_i + \beta_3 X_i^2 + \beta_4 Y_i^2 + \beta_5 X_i Y_i + \varepsilon_i,$$

- only used for predicting $\hat{Z}(s_i)$
- not doing any test or inference, so don't worry about correlation in ε 's
- accounting for correlation, i.e. using GLS, will give better estimates of $\hat{\beta}$'s.
- Potential advantages over inverse distance weighting:
 - Can estimate $\text{Var } \varepsilon$
 - Can construct prediction intervals for $\hat{Z}(s_i)$:
 - $\hat{Z}(s_i) \pm T_{1-\alpha/2} \sqrt{s^2 + \text{Var } \hat{Z}(s_i)}$

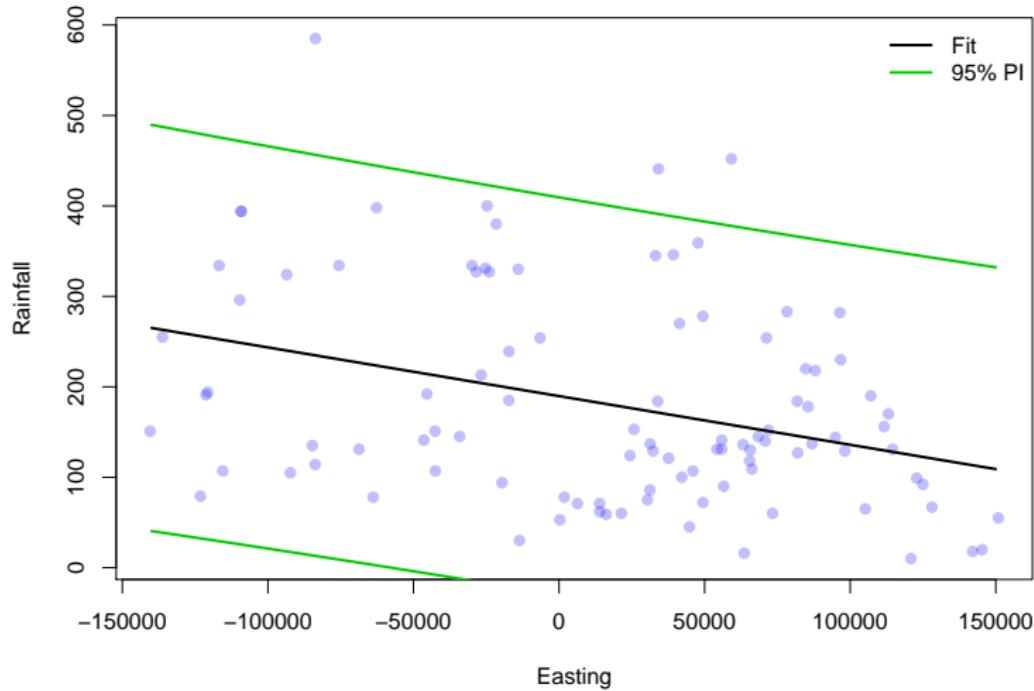
Spatial trend surface

- Confidence and Prediction intervals
- Reminder: can interpret a fitted regression line two ways
 - Predict average \bar{Y} at some new \bar{X}
 - Uncertainty only in regr. coefficients ("the line")
 - If I collected a second set of n obs, how similar is \hat{Y} ?
 - Decreases as n increases
 - se of a mean, confidence interval for \hat{Y}
 - Predict a new observation at some new \bar{X}
 - Uncertainty in both the line and obs around the line
 - Before sampling a new obs, how accurate is prediction?
 - Usually, very similar to s (rMSE), never smaller
 - sd of a predicted observation, prediction interval for \hat{Y}

Confidence interval: Swiss rain

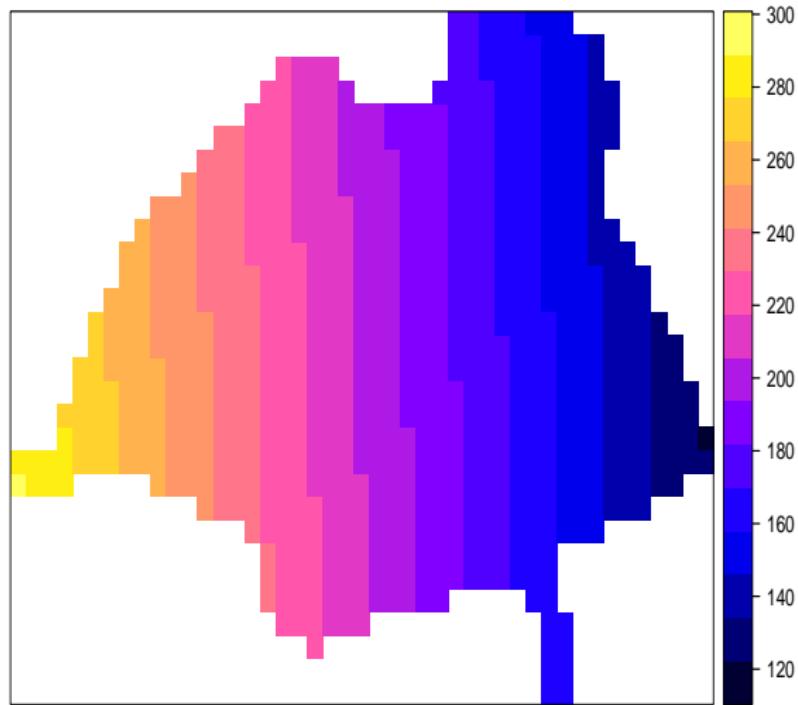


Prediction interval: Swiss rain



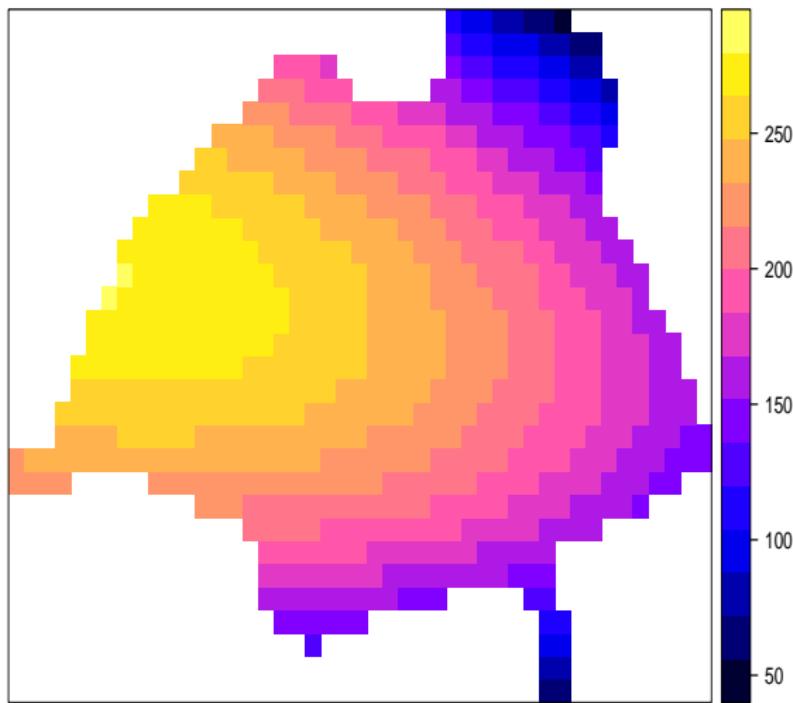
Swiss rain, linear TS

Swiss rainfall, linear trend surface



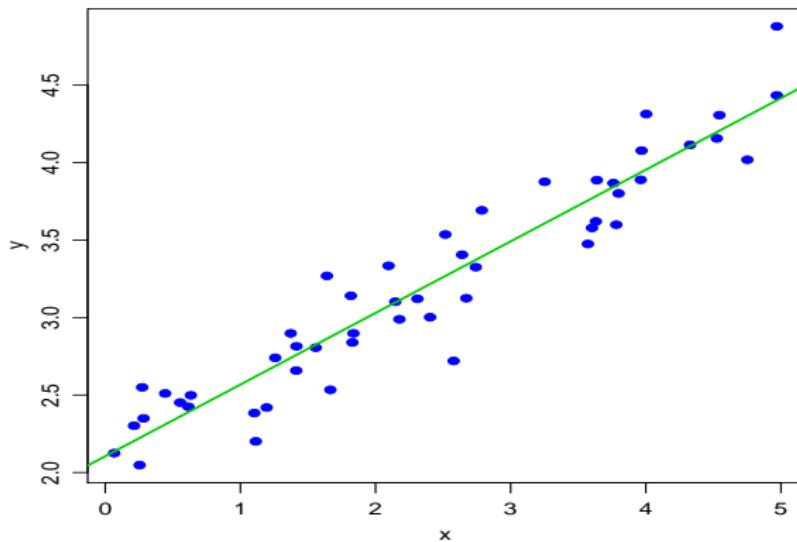
Swiss rain, quadratic TS

Swiss rainfall, quadratic trend surface



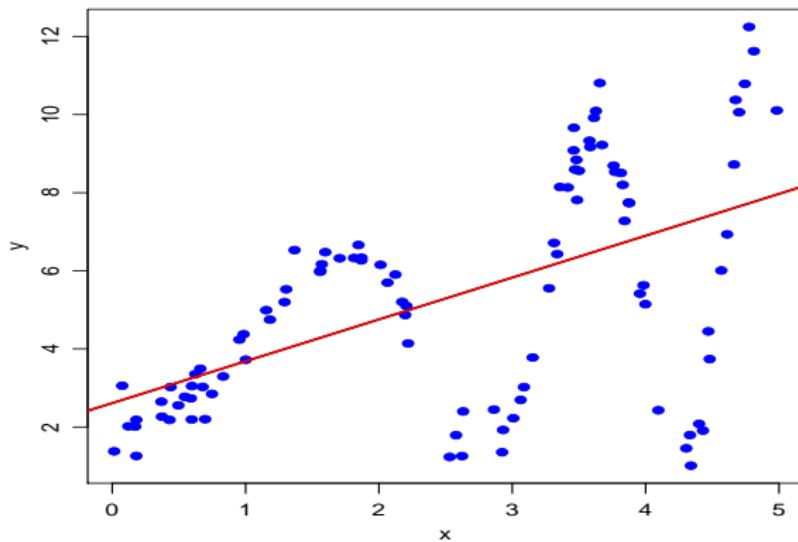
Splines: more flexible regression functions

- Concepts only. Details require a lot of intricate math and stat theory
- Consider response Y and one predictor X
- Sometimes a simple model is great



Splines: more flexible regression functions

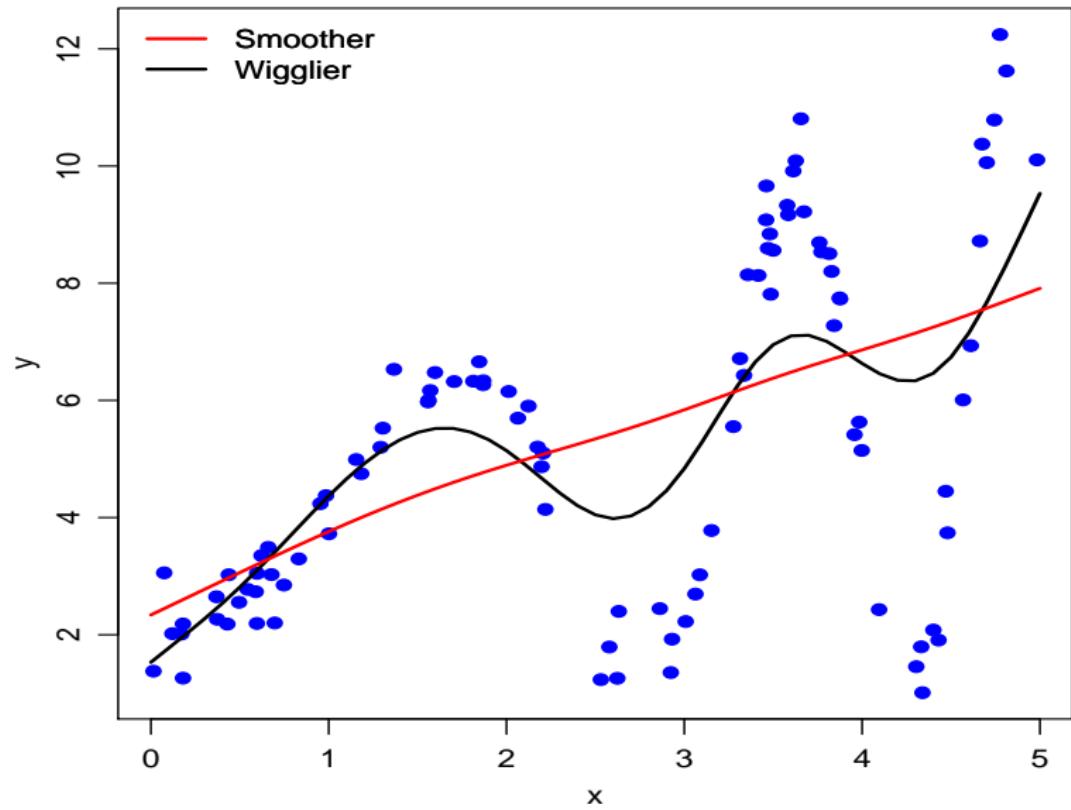
- And sometimes not



Splines: more flexible regression functions

- How to model relationship between Y and X, especially to predict?
 - If subject-matter-based model, use it!
 - Fit a higher order polynomial (quadratic, cubic)
 - Non-parametric regression: smooth the data
- Various NP regression methods. Focus on smoothing splines
- Concept: put together many models for small pieces of the data
- Need to choose number of small pieces
 - fewer pieces: smoother curve, closer to linear
 - more pieces: wigglier curve, closer to data

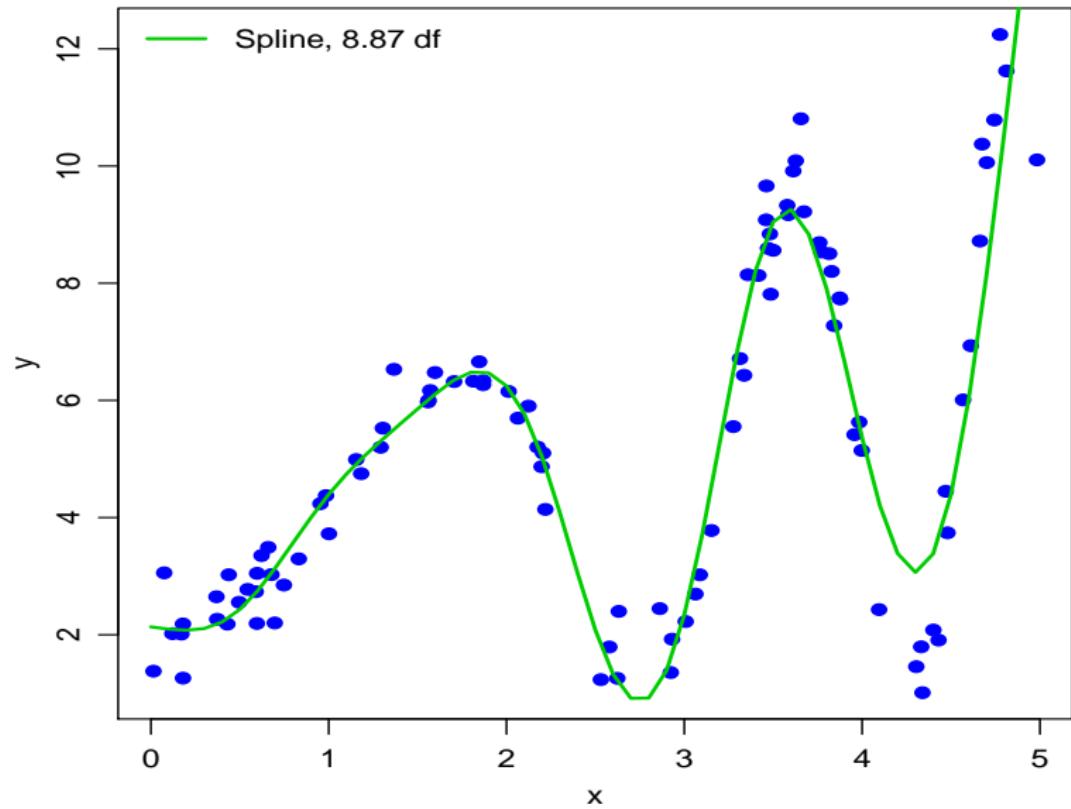
Spline fits



Spline fits

- How to choose how smooth/wiggly?
- not easy
- Too smooth is obviously bad
- Extremely wiggly effectively connects the dots
 - also bad - predictions of new obs. are inaccurate
 - overfitting the observed data
 - treating “noise” as signal.
- One common solution: cross validation
 - leave out an obs, fit a model, predict left obs.
 - put back, leave out next obs, ...
 - right choice is the value that makes good preds. of all the left-out obs
- splines require more data than when you know the model

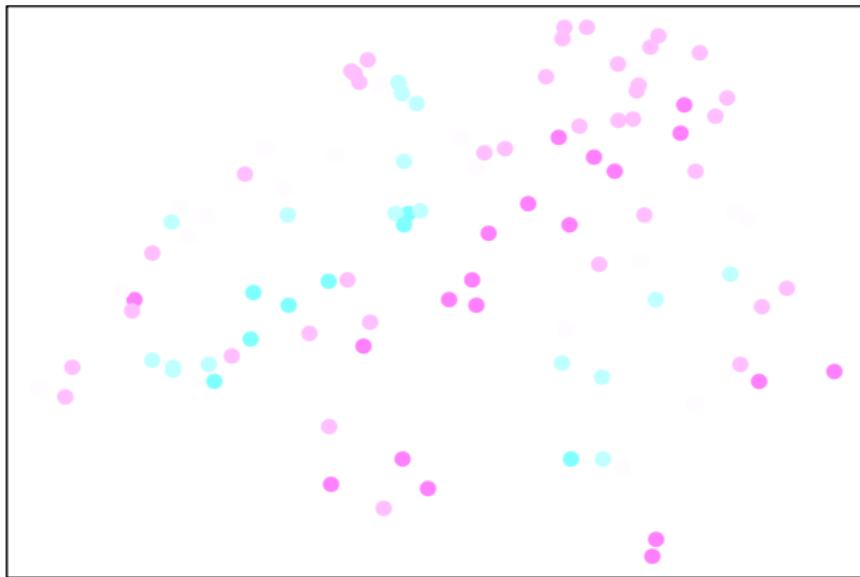
Spline fits



Spline fits

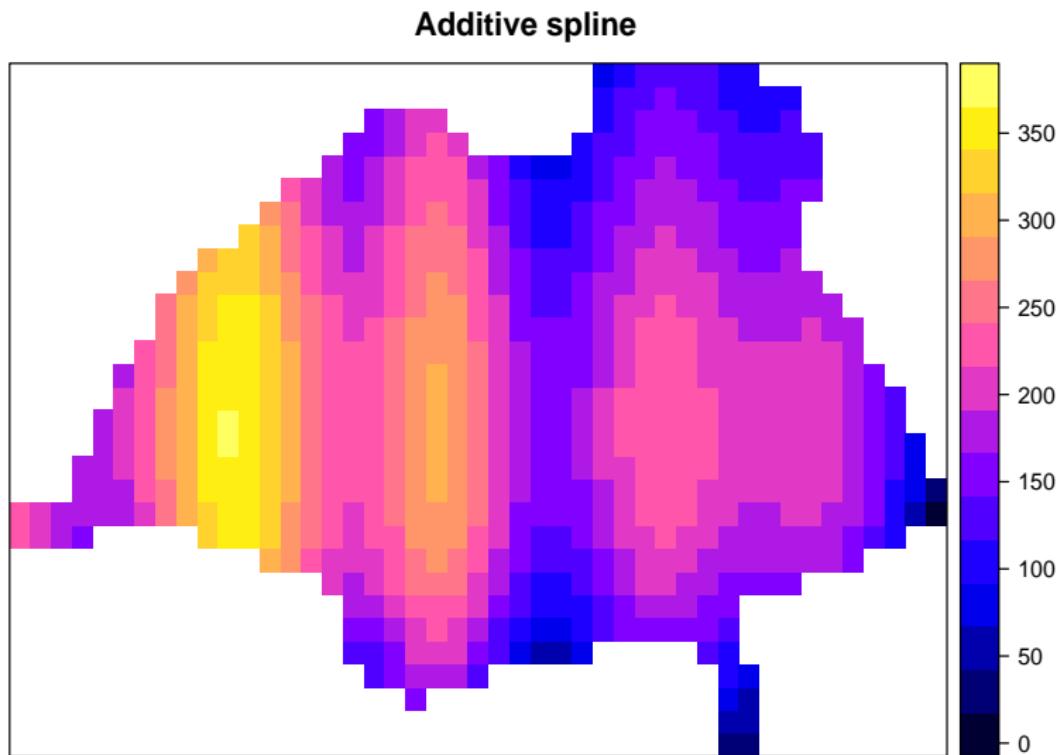
- Two ways to extend to spatial data
- Additive splines
 - spline fn of X coordinate: describes pattern in X
 - spline fn of Y coordinate: describes pattern in Y
 - Add them together
- depends on axis directions. Assumes pattern along the axes

Swiss rainfall data



- [0,98.6]
- (98.6,197.2]
- (197.2,295.8]
- (295.8,394.4]
- (394.4,493]

Swiss rain, Spline fit: $s(x) + s(y)$

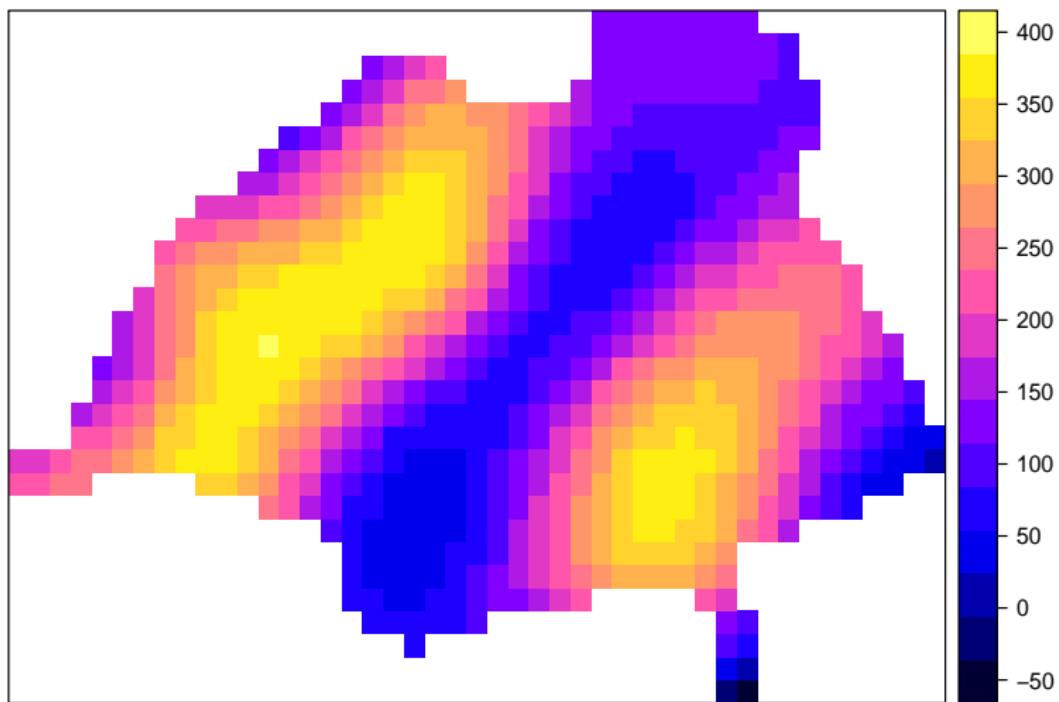


Spline fits

- Two ways to extend to spatial data
- thin plate spline
 - think of a sheet of paper or thin sheet of metal
 - drape over the data, allow to wiggle
 - models pattern in all directions simultaneously
 - not dependent on axis directions
 - requires much more data than additive splines

Swiss rain, Spline fit: $s(x,y)$

2D thin plate spline



Models for data

- IDW: no model
- trend surface: $Z(s) = \beta_0 + f(s) + \varepsilon$
 - all the spatial “action” is in $f(s)$
 - Have to choose form of $f(s)$
 - $\beta_1 X + \beta_2 Y$
 - $\beta_1 X + \beta_2 Y + \beta_3 X^2 + \beta_4 Y^2 + \beta_5 XY$
 - $s(X) + s(Y)$
 - \dots
 - $s(X, Y)$
 - given form of model, can easily estimate unknown parameters, e.g., β_1 , β_2 , or the parameters in $s()$.
- kriging: simple, ordinary $Z(s) = \beta_0 + \varepsilon$
 - ε are correlated. nearby observations more so.
 - all the spatial “action” is in the correlations
- universal kriging: $Z(s) = \beta_0 + f(s) + \varepsilon$, ε correlated

Kriging

- Original motivation:
 - underground gold mining. gold content varies along a rock face
 - want to predict where highest gold content
 - and / or average gold content in an area
 - sample a small fraction of the rock face
 - prediction problem: predict $Z(\hat{s})$ at new locations given data
- Danie Krige: treat $Z(s)$ as spatially correlated collection of r.v.'s
- derive optimal predictor
- original paper: 1951, So. African mining journal
- procedure now known as kriging

Kriging

- Simplest setup of the problem:
 $Z(s) = \beta_0 + \epsilon, \epsilon \sim N(0, \Sigma)$, β_0 , Σ known
- In words:
 - observations are spatially correlated r.v.'s
 - mean β_0 known
 - covariances (or correlations) between all pairs of obs. Σ , known
- Can derive: Kriging is the optimal linear predictor
 - No other linear combination of the observations has a smaller variance
- predictions are weighted average of the obs.
 - weights are functions of the spatial pattern
 - When little spatial pattern, \rightarrow regional average
 - When strong spatial pattern, \rightarrow local average
 - weights can be > 1 or < 0
 - predictions can exceed range of observations

vector obs errors

Variance-covariance matrix

n obs

Σ is n x n

variance

covariances

$\text{Cov}(Z_1, Z_2) = \text{Var}Z_1 \cdot \text{Var}Z_2 \text{ corr}(Z_1, Z_2)$ *symmetrical*

Kriging notation

- Use vectors and matrices to describe the data $Z(s)$, their means μ , and their variance-covariance matrix, Σ .

$$\bullet Z(s) = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_n \end{bmatrix}, \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}, \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{bmatrix}$$

- $P(s_0)$ is a function that predicts $Z(s_0)$

$$\sigma_{\text{err}} = \sigma^2$$

Kriging as making a good prediction

- What should we choose for $P(s_0)$?
- Want a “good” prediction. Need to measure how good or how bad.
- In general, define a loss function, $L()$, that tells us how to measure good/bad.
- Kriging: use squared error loss

$$L(Z(s_0), P(s_0)) = (Z(s_0) - P(s_0))^2$$

- $P(s_0)$ depends on the data, so $L()$ is a random variable
- so define a good predictor as one that minimizes $E L()$
- That predictor is $E Z(s_0) \mid Z(s)$ *“given”*

Expected Z at new location given specific values of $Z(g)$ at obs. locs.

Simple Kriging

- Kriging model: $Z(s) = \mu(s) + \varepsilon(s)$
where $\varepsilon(s)$ are correlated (spatial pattern)
- $\mu(s)$ is known, initially assume Σ is known
- can derive:

$$\frac{1}{a} \cdot a = 1$$
$$\Sigma \cdot \Sigma^{-1} = I$$

in case $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$P(s_0) = \underbrace{\mu(s_0)}_{\text{mean}} + \underbrace{\sigma' \Sigma^{-1} (Z(s) - \mu(s))}_{\text{residuals}}$$

- Derivation done in S&G, p. 223
- σ is vector of covariances: $\text{Cov}(Z(s_0), Z(s))$ —
- Σ is the Var-Cov matrix of the observations
- Least Squares regression: same loss function
 - Used to writing $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - Algebra: same as $\hat{Y}_i = \bar{Y} + \sigma_{xy} (\sigma_X^2)^{-1} (X_i - \bar{X})$

Simple Kriging

- This is the best predictor if $Z(s)$ is Gaussian
- best linear predictor if $Z(s)$ is not Gaussian
- Can also estimate prediction variance

quadratic form ≥ 0

$$\sigma^2(s_0) = \underline{\sigma^2} - \underline{\sigma' \Sigma^{-1} \sigma} \quad \left. \begin{array}{l} \text{prediction var} = \\ \sigma^2 + \text{Var } \hat{y} \end{array} \right\}$$

= multivariate normal

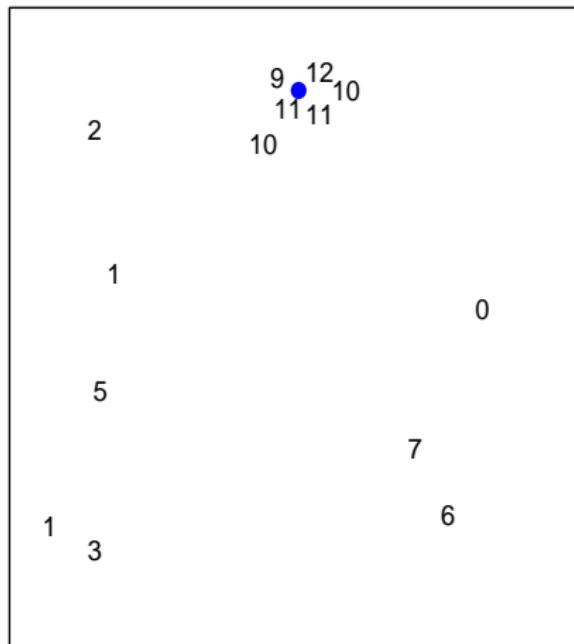
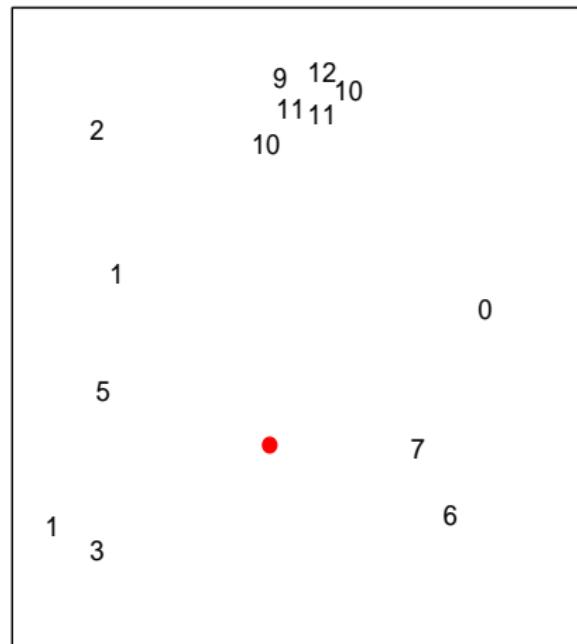
- This is the variance in the prediction conditional on (i.e., given) observed values

- Looks a bit unusual: usually add variances
- $\sigma' \Sigma^{-1} \sigma$ large when prediction loc. is highly corr. with nearby locs
- Reduces uncertainty in the prediction

10 12
8

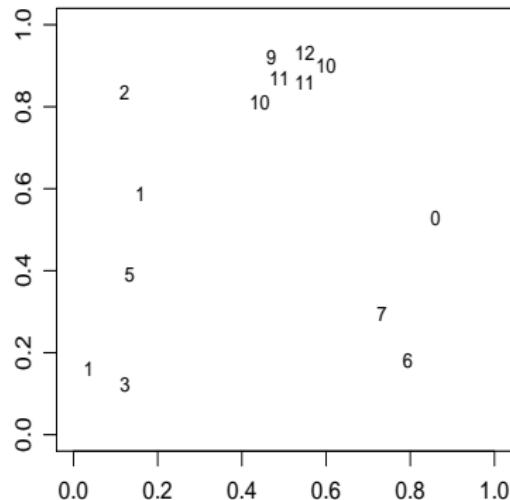
Simple Kriging

$$P(s_0) = \omega_1 z(s_1) + \omega_2 z(s_2) + \dots +$$



Simple Kriging: example

- Understanding the prediction in a simple situation
 - Our population: constant mean.
 - Our data: not same value because of random variation



Simple Kriging: example

- The prediction is:

$$P(s_0) = \mu + \sigma' \Sigma^{-1} (Z(s) - \mu)$$

- This is a weighted average of the deviations from the mean, μ

$$P(s_0) = \mu + \mathbf{w} (Z(s) - \mu)$$

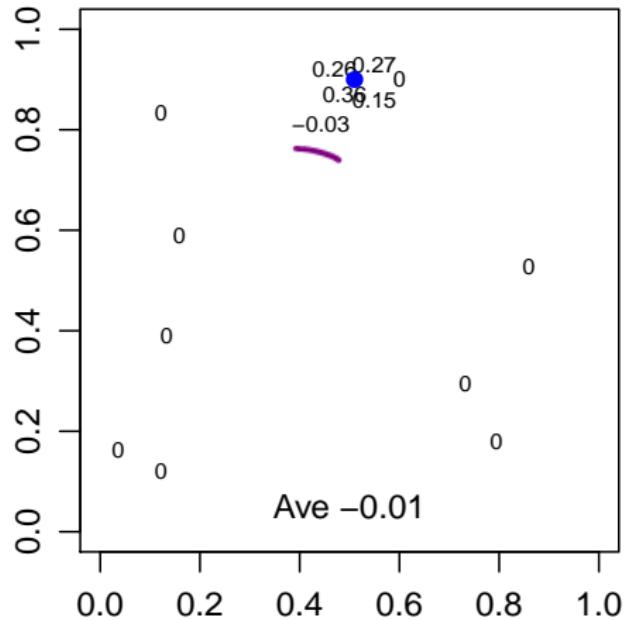
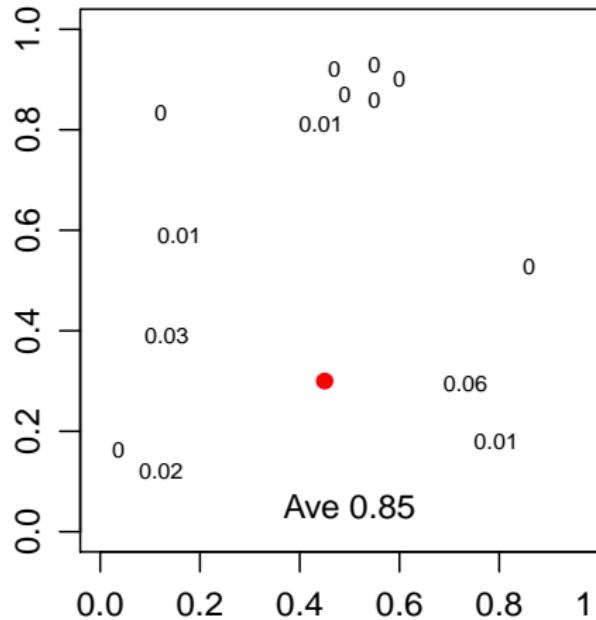
where the weights, \mathbf{w} , depend on the correlations: $\mathbf{w} = \sigma' \Sigma^{-1}$

- Can rewrite as a weighted average of n $Z(s)$ values and the mean, μ

$$P(s_0) = \underbrace{\mathbf{w} Z(s)}_{\text{obs}} + (1 - \sum \mathbf{w}) \mu$$

- look at those weights for predictions at two observations:
 - blue location: close to measured locations
 - red location: distant from all measured locations

Simple Kriging: example



Ordinary Kriging

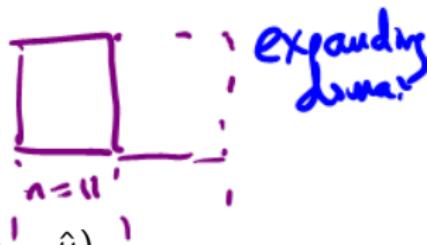
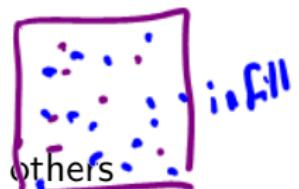
- The problem with simple kriging is that $\mu(s_0)$ usually not known
- Ordinary Kriging: estimate $\hat{\mu}(s_0)$
- slightly different statistical properties
 - no best linear predictor
 - but O.K. is best linear unbiased predictor

$$P(s_0) = \hat{\mu}(s_0) + \sigma' \Sigma^{-1} (Z(s) - \hat{\mu})$$

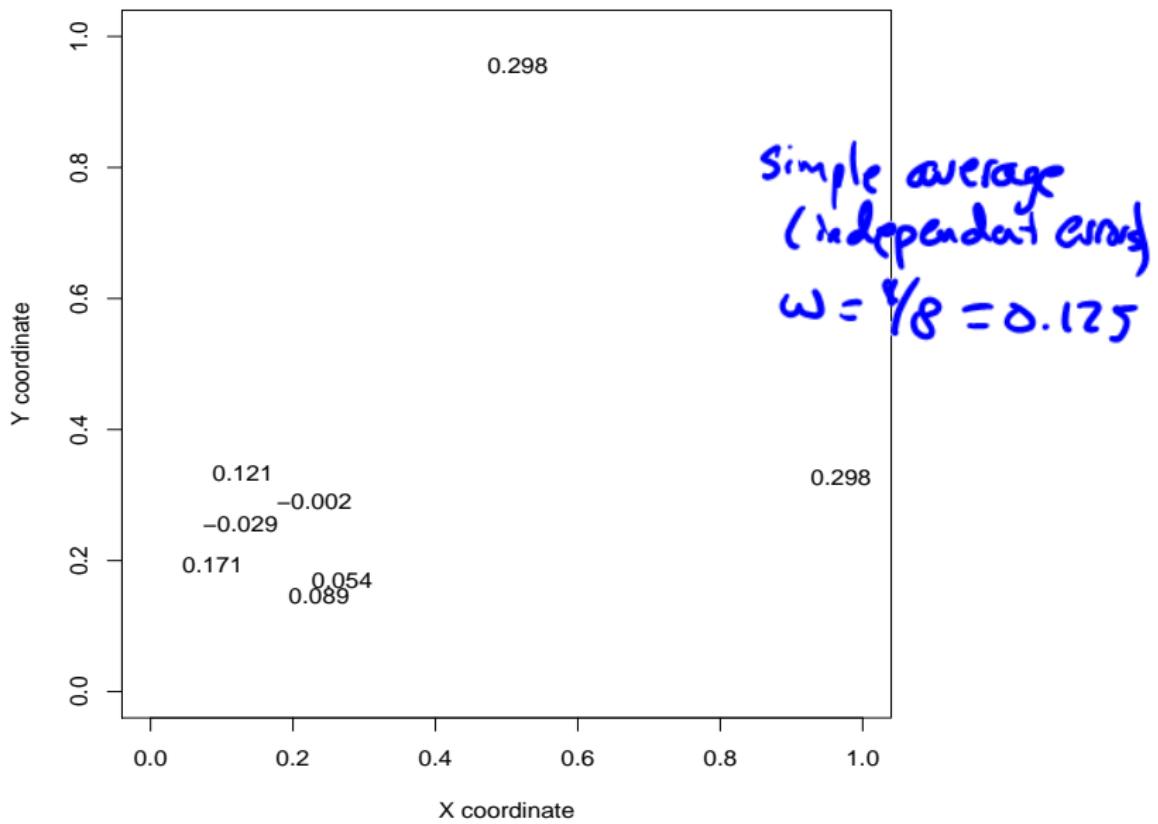
, where $\hat{\mu}(s_0)$ is estimated by generalized least squares, GLS

- For $\mathbf{Y} = \mathbf{X}\beta + \epsilon$, OLS: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ indep.
- In general, GLS: $\hat{\beta} = (\mathbf{X}'\Sigma^{-1}\mathbf{X})^{-1}\mathbf{X}'\Sigma^{-1}\mathbf{Y}$
- To estimate $\hat{\mu}$, $\hat{\mu} = (\mathbf{1}'\Sigma^{-1}\mathbf{1})^{-1}\mathbf{1}'\Sigma^{-1}Z(s)$
- Consequence of GLS is less weight on obs. correl. with others
- Picture on next slide

$$\mathbf{Y} = \mathbf{1}'\mu + \epsilon$$



Wts for GLS est of mean



- Useful insight: $\sigma' \Sigma^{-1}$ is a row vector, so

$$P(s_0) = \hat{\mu}(s_0) + \lambda (Z(s) - \hat{\mu})$$

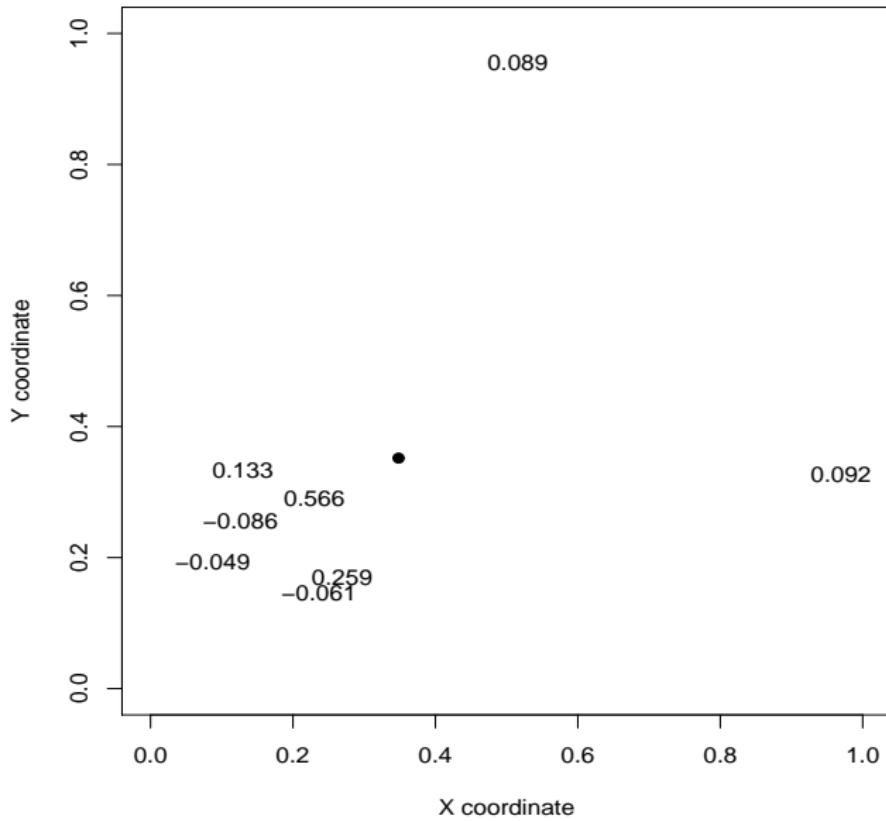
weights $\sigma' \Sigma^{-1}$

- values in λ depend on covariance btwn obs. values and covariance between prediction location and obs. values
- weights high for obs. close to prediction location
- values in λ may be negative, when obs. are “shadowed”
- Picture on next slide.
- Prediction variance:

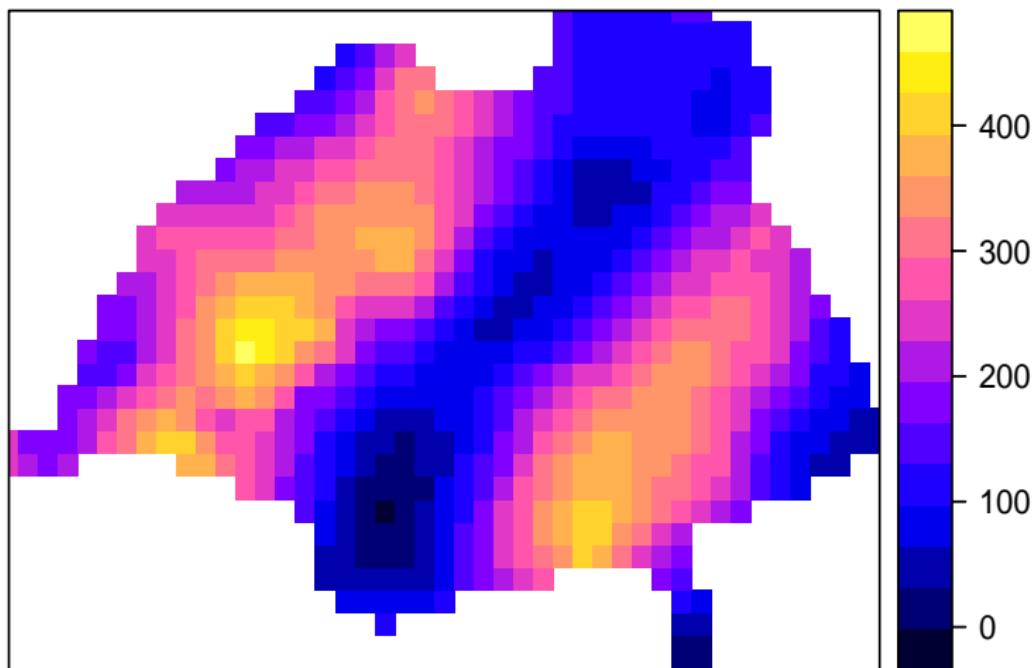
$$\sigma^2(s_0) = \sigma^2 - \sigma' \Sigma^{-1} \sigma + \frac{(1' \Sigma^{-1} \sigma)^2}{1' \Sigma^{-1} 1}$$

- S.K. prediction variance + addn. variance because est. μ .

Ordinary Kriging wts

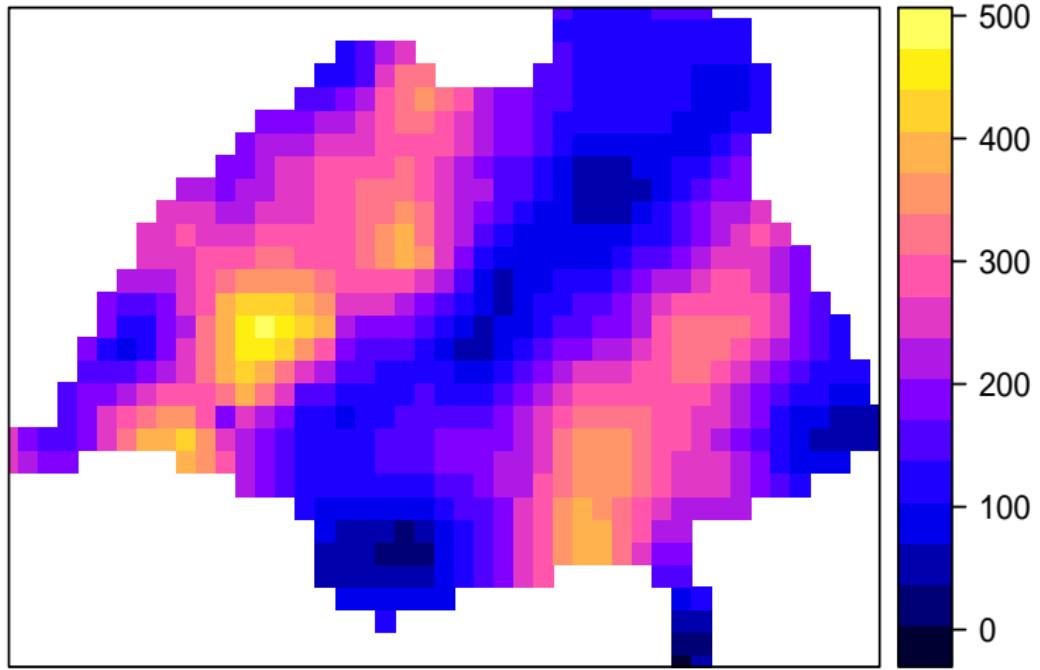


Kriging predictions

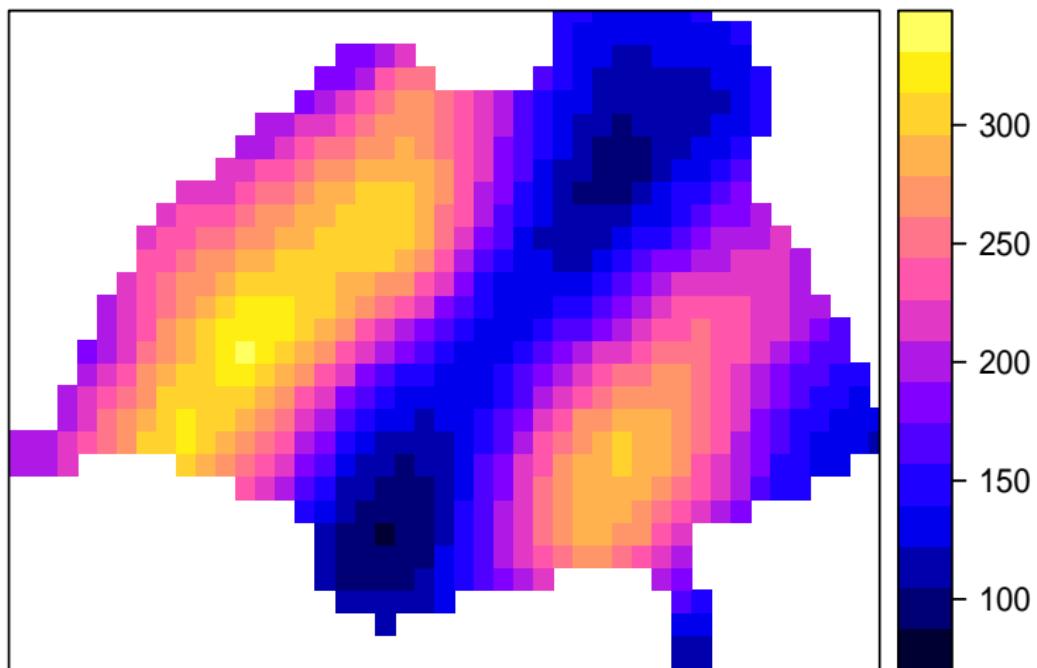


Kriging, shorter range correlation

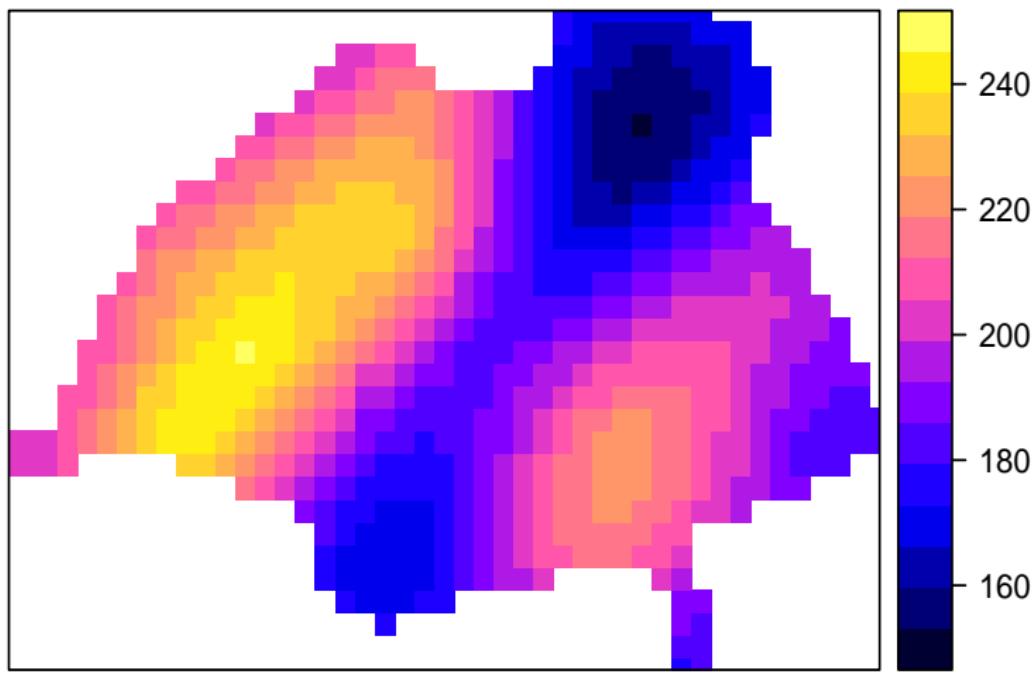
high corrol only at short distance



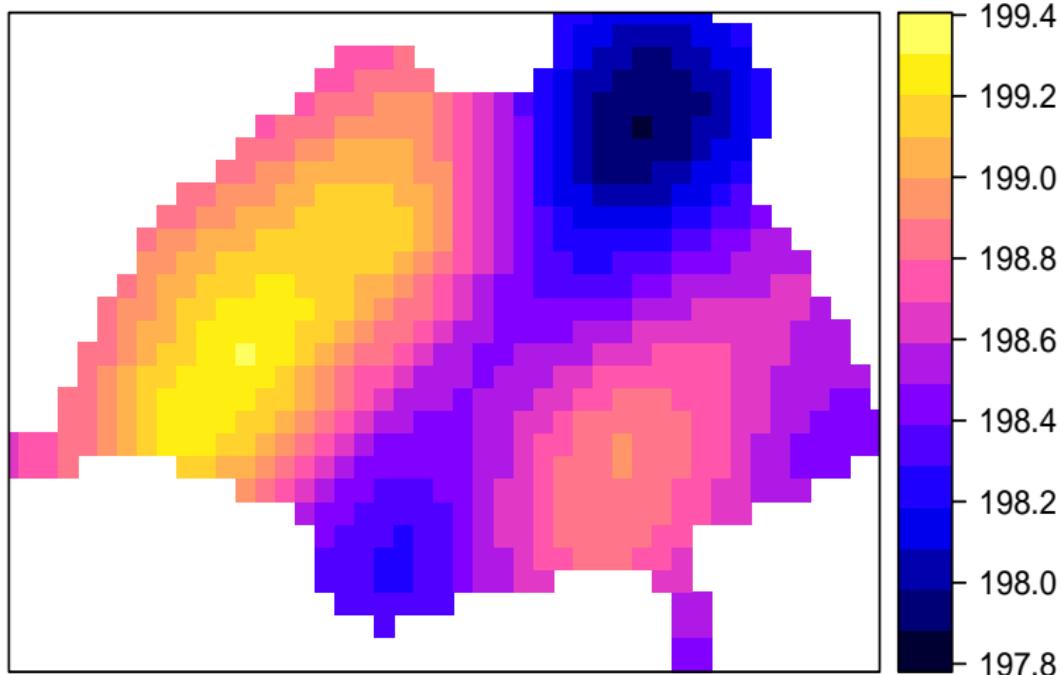
Kriging, less spatial dependence



Kriging, small spatial dependence



Kriging, almost no spatial dependence



Universal Kriging

$$\text{Trend: } Y = \underbrace{X\beta}_{\text{Spatial}} + \varepsilon^{\text{indep.}}$$

- generalize O.K. to any regression model for local mean
- model: $Z(s) = \underbrace{X(s)\beta}_{\text{trend}} + \underbrace{\varepsilon(s)}_{\text{correlated errors}}$
- i.e. trend + random variation
 - No unique decomposition
 - Generally consider trend as fixed, repeatable, pattern
 - and random variation to be non-repeatable pattern
- Measure Z at 50 spatial locations. What is the sample size?

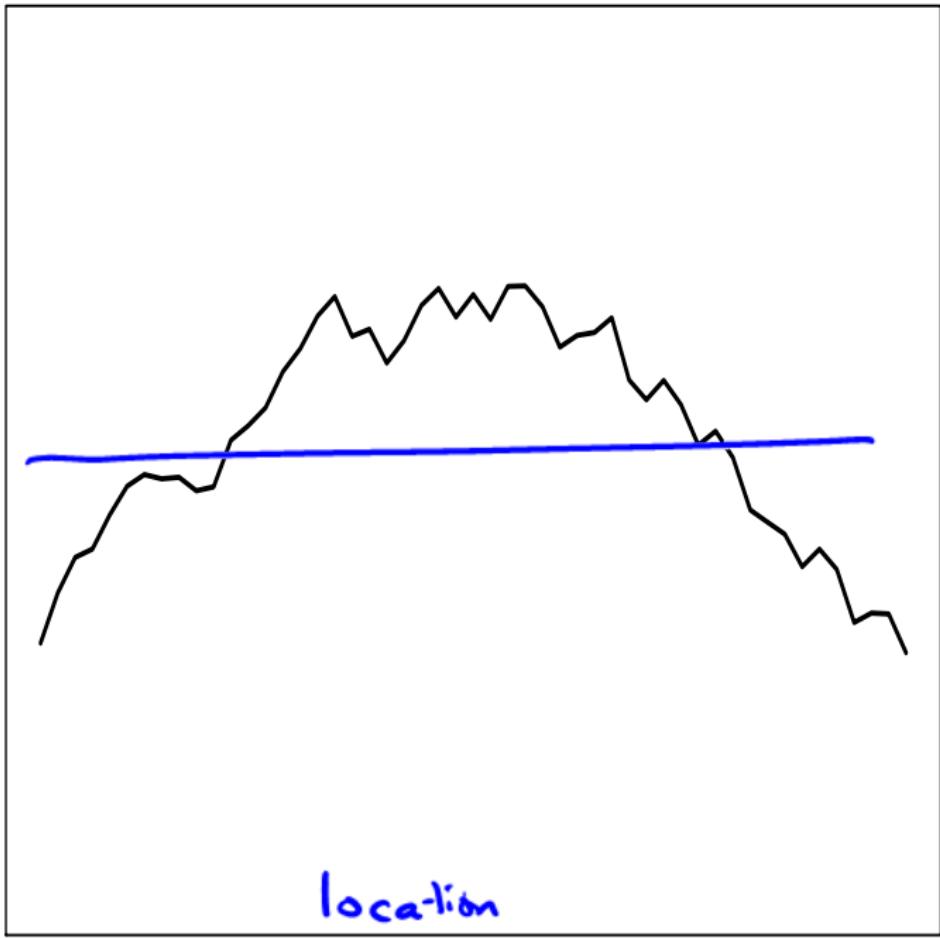
indep. $N=50$.

when spatially correl.
 $N=1$

Universal Kriging

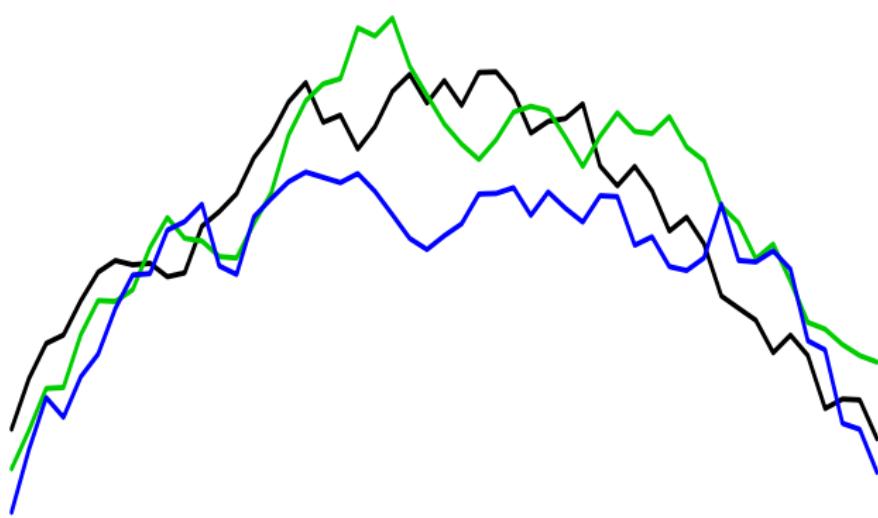
- generalize O.K. to any regression model
- model: $Z(s) = \mathbf{X}(s)\beta + \varepsilon(s)$
- i.e. trend + random variation
 - No unique decomposition
 - Generally consider trend as fixed, repeatable, pattern
 - and random variation to be non-repeatable pattern
- Measure Z at 50 spatial locations. Q: What is the sample size?
- A: ONE. You have one realization of that spatial pattern
- Makes it very difficult to distinguish fixed and random components
- Operationally:
 - trend is the variability that can be predicted by $\mathbf{X}(s)$
 - random variation is that which can not
- Choice of $\mathbf{X}(s)$ is really important!

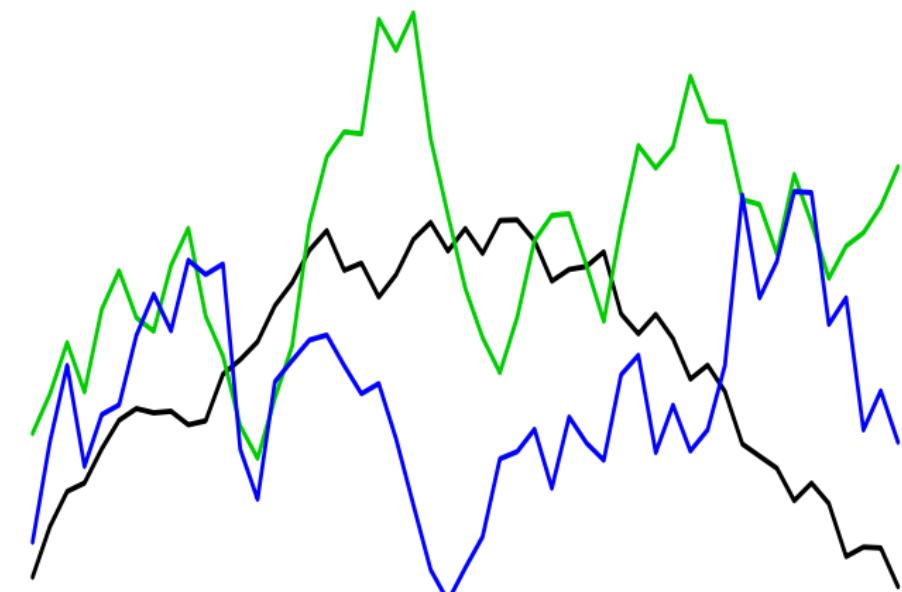
response
 z



location

trend. 2 additional data sets.





all correlated variation

Universal Kriging

- notice that spatial variation accounts for lack of fit to trend model
 - Two competing explanations
 - Defer discussion until we talk about spatial linear models
- Should be able to anticipate the predictor:

$$Y = X\beta + \varepsilon$$
$$P(s_0) = \underbrace{X(s)\hat{\beta}_{GLS}}_{\sigma' \Sigma^{-1} \text{ residuals.}} + \lambda (Z(s) - \underbrace{X(s)\hat{\beta}_{GLS}}_{\sigma' \Sigma^{-1}})$$

- and the prediction variance:

$$\sigma^2(s_0) = \underbrace{\sigma^2}_{\text{term for Var}} - \underbrace{\sigma' \Sigma^{-1} \sigma}_{\text{Var } X(s)\hat{\beta}}$$

- the term for $\text{Var } X(s)\hat{\beta}$ is complicated, not too informative

$$\hat{\beta}_{GLS} = \underbrace{(X(s)' \Sigma^{-1} X(s))^{-1}}_{\text{term for Var}} X(s)' \Sigma^{-1} Z(s)$$

Comparison of spatial prediction methods

- Inverse distance weighting

- more weight to nearby locs choose power.
- wts relative to other nearby locs
- if no other nearby locs, will still average the more distant locs
- no easy way to estimate uncertainty in prediction —

- Trend surfaces —

- depend on specified model form
- model is a global model —
- splines based on global est of smoothing param.
 - although there are local extensions
- estimate doesn't depend on number of nearby locs

Comparison of spatial prediction methods

- Kriging:

- based on correlations among observations
- estimated from global properties
- big advantage: estimate depends on number of nearby locs
 - nearby points: prediction more like the local ave.
 - no nearby points: prediction more like the global ave.
- and data determines how smooth
- theory: best predictor
 - my experience: not compelling because assumptions never met

\sum amongst obs
 σ pred location to obs.

S and G : Schabenberger and Gotway