Geostatistical data

@ Quantity measured at a location
e Assumed characteristic of that location, not a large area
o Examples:
elevation, annual rainfall, surface soil pH, O, concentration at 3m
@ Notation:
e s: location, a vector value.

o Usually s = (x,y) in some coordinate frame (e.g., longlat or UTM)
o Written as a vector because details of 1D (beach, line), 2D (earth
surface), 3D (ocean, soil, atmosphere) not important

o Z(s): the characteristic at location s.
o Geostatistical data

e Z(s) exists everywhere within boundary of study area
o Generally, no sharp changes (jumps) in Z(s)
o Z(s1) probably different from Z(s2), but transition is smooth
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Many possible goals

@ Predict Z(s) at unmeasured locations
@ Describe spatial pattern in Z(s)

o How similar is Z(s) to neighboring values?
e How does that change with distance to neighbor?

@ Model relationship between Z(s) and covariates
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@ Could be done to fill in a grid so can draw map or use image/contour
plot
@ Or, done because you need predictions at unmeasured points

@ What is Z at the location marked by X?
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@ One possibility: simple average of Z over entire region
e Very common in non-spatial contexts
o 1st law of geography (Tobler): everything is related to everything else
more closely related to nearby things

e This principle is very important if there is a spatial trend (variation
across the region) or some form of spatial pattern.

e simple average ignores spatial trend and pattern
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@ What if had a bit more data:

10

@ Overall average for region clearly inappropriate
@ Consider some form of local average
@ We will discuss 3 methods:

o Inverse distance weighting

e Spatial trend model

o Kriging: we'll spend most time / effort on this
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Inverse distance weighting

o Concept:
o Prediction an average that emphasizes nearby values
e Done by weighting all observations
o Higher weight to nearby observations

@ Notation: s; is location of i'th observation
d;j is distance between location i and location
Z(s;) is value of Z at location s;

A

Z(s;) is prediction of Z at location s;

5 Xiwij Z(si
Z(s;)) = Vm,where
iWij
1
Wi = 3
2

6/58
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Inverse distance weighting

@ ais an arbitrary parameter, commonly 1 or 2
e a =0 gives you the simple average over entire region (all weights = 1)
o larger values — “more local”" estimate, because emphasize shorter
distances
o if djj = 0, i.e. predicting at an observed location, use observed value
o Characteristics:
o wj always > 0 and w;j/sum always <1
o Sometimes set small values of w;; to 0
o Z(s;) always within range of observed values
Some like this; other’s don't.
@ Problem: have to choose a. Some approaches:
o Ad hoc (you like the resulting picture),
e or tradition (your field always uses 2 or 1.5 or 77)

@ demonstrate role of a by comparing results fora=2 and a=1
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Swiss rainfall data
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Swiss rain, IDW, power=2

Swiss rainfall, IDW, power=2
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Swiss rain, IDW, power=1

Swiss rainfall, IDW, power=1
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Swiss rain, IDW, power=0

Swiss rainfall, IDW, power=0
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Swiss rain, IDW, difference

Swiss rainfall, IDW, difference
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Swiss rain, IDW, comparison
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Spatial trend surface

@ Assume some function of X and Y coordinates fits the data

@ often a low order polynomial (linear or quadratic)

Z(si) = Po+ iXi+ B2Yi+ei, or
Z(s;) = Bo+ BiXi+ BoYi+ BsX? + BaY? + BsXiYi + €,

e only used for predicting Z(s;)

@ not doing any test or inference, so don't worry about correlation in €'s

° ;iccounting for correlation, i.e. using GLS, will give better estimates of
B's.

@ Potential advantages over inverse distance weighting:

o Can estimate Var ¢
o Can construct prediction intervals for Z(s;):

o 2(5,’) + Tlfa/g \/ s2 + Var 2(5,’)
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Spatial trend surface

@ Confidence and Prediction intervals

@ Reminder: can interpret a fitted regression line two ways
o Predict average Y at some new X

Uncertainty only in regr. coefficients (“the line”)

If | collected a second set of n obs, how similar is Y?

Decreases as n increases

se of a mean, confidence interval for ¥

o Predict a new observation at some new X

Uncertainty in both the line and obs around the line
Before sampling a new obs, how accurate is prediction?
Usually, very similar to s (rMSE), never smaller

sd of a predicted observation, prediction interval for Y
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Confidence interval: Swiss
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Prediction interval: Swiss rain
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Swiss rain, linear TS

Swiss rainfall, linear trend surface
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Swiss rain, quadratic TS

Swiss rainfall, quadratic trend surface
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Splines: more flexible regression functions

@ Concepts only. Details require a lot of intricate math and stat theory
@ Consider response Y and one predictor X

@ Sometimes a simple model is great

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3 Spring 2020



Splines: more flexible regression functions

@ And sometimes not

o~ ]
=
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Splines: more flexible regression functions

@ How to model relationship between Y and X, especially to predict?

o If subject-matter-based model, use it!
o Fit a higher order polynomial (quadratic, cubic)
o Non-parametric regression: smooth the data

@ Various NP regression methods. Focus on smoothing splines
@ Concept: put together many models for small pieces of the data

@ Need to choose number of small pieces

o fewer pieces: smoother curve, closer to linear
e more pieces: wigglier curve, closer to data
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Spline fits

—— Smoother b
—— Wigglier -

o~
—
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How to choose how smooth /wiggly?
not easy

Too smooth is obviously bad

Extemely wiggly effectively connects the dots
e also bad - predictions of new obs. are inaccurate
e overfitting the observed data
e treating “noise” as signal.
@ One common solution: cross validation
e leave out an obs, fit a model, predict left obs.
e put back, leave out next obs, - - -
e right choice is the value that makes good preds. of all the left-out obs

splines require more data than when you know the model
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Spline fits

o~ _| —— Spline, 8.87 df hd
—
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@ Two ways to extend to spatial data
o Additive splines

e spline fn of X coordinate: describes pattern in X
e spline fn of Y coordinate: describes pattern in Y
o Add them together

@ depends on axis directions. Assumes pattern along the axes
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Swiss rainfall data
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Swiss rain, Spline fit: s(x) + s(y)

Additive spline

I
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@ Two ways to extend to spatial data

@ thin plate spline

think of a sheet of paper or thin sheet of metal
drape over the data, allow to wiggle

models pattern in all directions simultaneously
not dependent on axis directions

requires much more data than additive splines
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Swiss rain, Spline fit: s(x,y)

2D thin plate spline
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Models for data

o IDW: no model
e trend surface: Z(s) = o+ f(s) + ¢
o all the spatial “action” is in f(s)
e Have to choose form of f(s)
o JiX+ B Y
° 51X+52 Y + B3 X*+ Ba Y2+55XY
s(X) +s(Y) :
° s(X Y)
o given form of model, can easily estimate unknown parameters,
e.g., 51, P2, or the parameters in s().

e kriging: simple, ordinary Z(s) = 5o + ¢
e & are correlated. nearby observations more so.
e all the spatial “action” is in the correlations

@ universal kriging: Z(s) = Bo + f(s) + &, € correlated
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Original motivation:

underground gold mining. gold content varies along a rock face
want to predict where highest gold content

and / or average gold content in an area

sample a small fraction of the rock face

prediction problem: predict Z(s) at new locations given data

Danie Krige: treat Z(s) as spatially correlated collection of r.v.'s
derive optimal predictor
original paper: 1951, So. African mining journal

procedure now known as kriging

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3 Spring 2020 32/58



Jeclor abs  errrs

@ Simp#est setup of the groblem: v Ud.:‘\:;(;. ~dasiance
@ Bo te _/\ﬁ(_),}:), Bo, £ known A ohs

ords: n.,!aaauj J-s4 wmean z }g nxXn

@ observations are spatially cofrelated r.v.'s
— @ mean [y known
e covariances (or correlations) between all pairs of obs. X, known &

e Can derive: Kriging is the optimal linear predictor v
o No other linear combination of the observations has a smajfer variance

ool
~ o predictions are weighted average of the obs. ot ¢

@ weights are functions of the spatial pattern

o When little spatial pattern, — regional average 2.
e When strong spatial pattern, — local average

@ weights can be > 1 or < 0

e predictions can € bservations

Cov (2, ,%2) =z |Wr2 var2, corr(zj;-"'%:f"' iend
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Kriging notation

@ Use vectors and matrices to describe the data Z(s), their means p,
and their variance-covariance matrix, X.

4| M1

2> 2
oz(s)=| 7 |.u=|"] ==

Zy Mn

e P(sp) is a function that predicts Z(s)

2
G, = G
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Kriging as making a good prediction

What should we choose for P(sg)?

@ Want a “good” prediction. Need to measure how good or how bad.

@ In general, define a loss function,L(), that tells us how to measure
good/bad.

@ Kriging: use squared error loss

L(Z(so), P(s0)) = (Z(s0) — P(s0))

@ P(sp) depends on the data, so L() is a random variable
@ so define a good predictor as one that minimizes E L()
e That predictor is E Z(sg (s ’hiuﬂl”

E-\cPeet- Zaa mlocﬁ;m ke
spdclﬁg Va lueg oF e(,) a OL’. Idcs.
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Simple Kriging

e Kriging model: Z(s) = u(s) +&(s)
where &(s) are correlated (spatial pattern)

o
@ u(s) is known, initially assume X is known i
@ can derive: . s

P(so) = p(so) + "= 2(s) - u(s))
, res.daals

e Derivation done in S&G, p. 223
e o is vector of covariances: Cov (Z(sg), Z(s)) —
o X is the Var-Cov matrix of the observations

@ Least Squares regression: same loss function
o Used to writing Y; = 30 + BlX
o Algebra: same as Y; = Y + 0, (0%) "1 X — X)
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Simple Kriging

@ This is the best predictor if Z(s) is Gaussian = m“lf Ner.ave
@ best linear predictor if Z(s) is not Gaussian no’ ma.|
e Can also estimate prediction variance :P,CJ-_‘{M Josr =

) 2 A
p“" 7/0 o?(so) :4.‘12:__:_7_}5__1_: T +Var Y

e
e This is the variance in the prediction conditional on (i.e., given)

observed values
a bit unusual: usually add variances

S - . . .
sdtices uncertainty in the prediction | 172
" K

8
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Simple Kriging

PS)= W2(5)tw, 26y - - -- -

9,12,
2 11171
10
1
5
1
3

9 12
11 1110

10
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Simple Kriging: example

@ Understanding the prediction in a simple situation

e Our population: constant mean.
o Our data: not same value because of random variation

<
i
9 12

11 1110

0.8

0.4

0.0
|
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Simple Kriging: example

@ The prediction is:
P(so) = p+a T (Z(s) — p)
@ This is a weighted average of the deviations from the mean, u

P(so) = p+w(Z(s)—p)’

where the weights, w, depend on the correlations: w =

e Can rewrite as a weighted average of n Z(s) values anc gan, [

Sun
P(so) =wZ(s)+ (1 — Zﬂ)u -

@ look at those weights for predicﬁbo?s at two observations:

o blue location: close to measured locations
e red location: distant from all measured locations
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Simple Kriging: example
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Ordinary Kriging

@ The problem with simple kriging is that p(so) usually not known

@ Ordinary Kriging: estimate /i(so) .,_._.-l. -3\ M‘lb
e slightly different statistical properties I ' e"i)u

@ no best linear predictor

e but O.K. is best linear unbiased predictor P '
~ f—— PSR!
P(s0) = A(so) + o £~ (Z(s) — p) '

 —— .

3

, where [i(sp) is estimated by generalized least squares, GLS
o For Y =XB+¢,0LS: 3= (X X)XV nde.
o In general, GLS: 3 = (X X 'X)'X'E 'Y
o To estimate i, i = (1,):_11)’11,):_ Z(s)
o Consequence of GLS is Jess Wé-i_ghtez)-n obs. correl. with

) . )
@ Picture on next slide 'Y'Z l_ A 8
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Wits for GLS est of mean

P&-::\T em,s
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;|
o Useful insight: o' X! is a row vector, so wQ'JjLK q Z

P(so) = fi(so) Z(s) — 1)

@ values in A depend on covariance btwn obs. values and covariance
between prediction location and obs. values

eignty .. .
° mlgﬁkfor obs. close to prediction location —~
e ———
@ values in A may be negative, when obs. are “shadowed”
@ Picture on next slide.

@ Prediction variance:

(1-1x10)?

2 2 's—1
c°(sg) =0"—0c X "o+ 7

@ S.K. prediction variance 4+ addn. variance because est. p.
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Ordinary Kriging wts
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Swiss rainfall

Kriging predictions
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Swiss rainfall

Kriging, shorter range correlation
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Swiss rainfall

Kriging, less spatial dependence
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Swiss rainfall

Kriging, small spatial dependence
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Swiss rainfall

Kriging, almost no spatial dependence
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Universal Kriging

Mdep.
1 Tred: Y= xB+€

o generalize O.K. to any regression model for local mean Sﬁl‘hd

@ model: Z(s) ”@— Cnrfe‘al'fj eﬂ'ﬂgfs
@ i.e. trend 4+ random variation

o No unique decomposition
o Generally consider trend as fixed, repeatable, pattern
e and random variation to be non-repeatable pattern

@ Measure Z at 50 spatial locations. What is the sample size?
When -{:Q
Wy Mo sl el
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Universal Kriging

o generalize O.K. to any regression model
e model: Z(s) = X(s)B+ &(s)
@ i.e. trend 4 random variation
e No unique decomposition
o Generally consider trend as fixed, repeatable, pattern
e and random variation to be non-repeatable pattern
@ Measure Z at 50 spatial locations. Q: What is the sample size?
@ A: ONE. You have one realization of that spatial pattern
o Makes it very difficult to distinguish fixed and random components
@ Operationally:
o trend is the variability that can be predicted by X(s)
e random variation is that which can not
@ Choice of X(s) is really important!
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trod. 2 «ddbomel datn setls .
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el corre\ated var latidn,
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Universal Kriging

@ notice that spatial variation accounts for lack of fit to trend model
. _ —_— -
e Two competing explanations
o Defer discussion until we talk about spatial linear models

@ Should be able to anticipa‘;e the predictor: Yz X B +£
<

P(s0) = X()Bars (2] 2(5) ~ X(o)Bss)
@ and the prediction variance: G“' Z_l rC$:¢L-l-15 .

0%(so) = 0% — o £ Lo + term for Var X(s)33

s

A

o the term for Var X(s)3 is complicated, not too informative

Bows = (X(s) Z71X(s)) ' X(s) 71 Z(s)
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Comparison of spatial prediction methods

@ Inverse distance weighting
@ more weight to nearby locs <
: aaef.
o wts relative to other nearby locs C\\»SC ?
e if no other nearby locs, will still average the more distant locs
@ no easy way to estimate uncertainty in prediction —
@ Trend surfaces _

e depend on specified model form
e model is a global model -
@ splines based on global est of smoothing param.

@ although there are local extensions
. , ——
estimate doesn't depend on number of nearby locs
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Comparison of spatial prediction methods

i asopgsl b

° Kriging: pred skt obs.

e based on correlations among observat
estimated from global properties
big advantage: estimate depends on number of nearby locs

@ nearby points: prediction more like the local ave.

@ no nearby points: prediction more like the global ave.
and data determines how smooth
theory: best predictor —

@ my experience: not compelling because assumptions never met
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